Показано заданий: 1761-1780
Две фабрики выпускают одинаковые стёкла для автомобильных фар. Первая фабрика выпускает 30% этих стёкол, вторая — 70%, причём брак стёкол, изготовленных фабриками, составляет на первой фабрике 5%, на второй — 4%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным. |
Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,34. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза. |
Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 9 очков в двух играх. Если команда выигрывает, она получает 7 очков, в случае ничьей — 2 очка, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,2. |
Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 9. Какова вероятность того, что для этого потребовалось три броска? Ответ округлите до сотых. |
Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 5. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых. |
Вероятность того, что батарейка бракованная, равна 0,08. Покупатель в магазине выбирает случайную упаковку, в которой две такие батарейки. Найдите вероятность того, что обе батарейки окажутся исправными. |
Вероятность того, что батарейка бракованная, равна 0,03. Покупатель в магазине выбирает случайную упаковку, в которой две такие батарейки. Найдите вероятность того, что обе батарейки окажутся исправными. |
Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Стартер» по очереди играет с командами «Ротор», «Мотор» и «Монтер». Найдите вероятность того, что «Стартер» будет начинать только вторую игру. |
Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Биолог» выиграет жребий ровно два раза. |
При выпечке хлеба производится контрольное взвешивание свежей буханки. Известно, что вероятность того, что масса окажется меньше, чем 810 г, равна 0,97. Вероятность того, что масса окажется больше, чем 790 г, равна 0,94. Найдите вероятность того, что масса буханки больше, чем 790 г, но меньше, чем 810 г. |
При выпечке хлеба производится контрольное взвешивание свежей буханки. Известно, что вероятность того, что масса окажется меньше, чем 810 г, равна 0,96. Вероятность того, что масса окажется больше, чем 790 г, равна 0,93. Найдите вероятность того, что масса буханки больше, чем 790 г, но меньше, чем 810 г. |
Ваня бросил игральный кубик, и у него выпало больше 2 очков. Петя бросил игральный кубик, и у него выпало меньше 5 очков. Найдите вероятность того, что у Пети выпало очков меньше, чем у Вани. |
Ваня бросил игральный кубик, и у него выпало больше 2 очков. Петя бросил игральный кубик, и у него выпало меньше 6 очков. Найдите вероятность того, что у Пети выпало очков больше, чем у Вани. |
В верхнем ящике стола лежит 10 белых и 15 черных одинаковых по размеру кубиков. В нижнем ящике стола лежит 15 белых и 10 черных таких же кубиков. Ваня наугад взял из верхнего ящика два кубика, а Толя — два кубика из нижнего ящика. После этого Ваня положил свои кубики в нижний ящик, а Толя — в верхний. Найдите вероятность того, что в верхнем ящике стало 11 белых и 14 черных кубиков. |
В верхнем ящике стола лежит 10 белых и 15 черных одинаковых по размеру кубиков. В нижнем ящике стола лежит 15 белых и 10 черных таких же кубиков. Аня наугад взяла из верхнего ящика два кубика, а Оля — два кубика из нижнего ящика. После этого Аня положила свои кубики в нижний ящик, а Оля — в верхний. Найдите вероятность того, что в верхнем ящике по прежнему будет 10 белых и 15 черных кубиков. |
В коробке 6 синих, 12 красных и 7 зелёных фломастеров. Случайным образом выбирают два фломастера. Какова вероятность того, что окажутся выбраны один синий и один красный фломастеры? |
В ящике 7 красных и 3 синих фломастера. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер появится третьим по счёту? |
Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 4 орла» больше вероятности события «выпадет ровно 3 орла»? |
Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень дается не более двух выстрелов и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6. Во сколько раз вероятность события «стрелок поразит ровно две мишени» больше вероятности события «стрелок поразит ровно одну мишень»? |
На одной полке стоит 25 блюдец: 16 красных и 9 синих. На другой полке стоит 25 чашек: 13 красных и 12 синих. Наугад берут два блюдца и две чашки. Найдите вероятность, что из них можно будет составить две чайные пары (блюдце с чашкой), каждая из которых будет одного цвета. |